

Lecture 15:
Finite Automata

CS103CS103

Winter 2025Winter 2025

Part 2 of 3

Finite Automata
Part Two

Recap from Last Time

Formal Language Theory

● An alphabet is a set, usually denoted Σ,
consisting of elements called characters.

● A string over Σ is a finite sequence of zero or
more characters taken from Σ.

● The empty string has no characters and is
denoted ε.

● A language over Σ is a set of strings over Σ.
● The language Σ* is the set of all strings over Σ.

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton
that we will see in this course.

DFAs

● A DFA consists of:
● A set of states
● Exactly one element of the set of states designated as a

start state
– (as a consequence, the set of states must be nonempty)

● A subset of the states designated as accepting states
● An alphabet Σ
● A transition function that maps (state, character) ordered

pairs to states
– (i.e., for each state in the DFA, there must be exactly one

transition defined for each symbol in Σ)

The Language of an Automaton

● If D is a DFA that processes strings over
Σ, the language of D, denoted (ℒ D), is
the set of all strings D accepts.

● Formally:

ℒ(D) = { w ∈ Σ* | D accepts w }

New Stuff!

The Regular Languages

A language L is called a regular language
if there exists a DFA D such that (ℒ D) = L.

If L is a language and (ℒ D) = L, we say
that D recognizes the language L.

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

Σ*

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

Σ*

L

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the set of all
strings in Σ* that aren't in L. (The complement of
a language is also a language.)

● Formally:

L = Σ* - L

L L

Σ*

Complementing Regular Languages

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a a

b

b

 Σ

L = { w ∈ {a, b}* | w does not contain aa as a substring }

q0

start
q1 q2

a a

b

b

 Σ

Closure Properties

● Theorem: If L is a regular language, then L is also a regular
language.

● (We haven’t formally proved this, but you may assume it’s true in
this class.)

● As a result, we say that the regular languages are closed under
complementation.

All languages

Regular languages

L

L

Question to ponder: are
the nonregular languages

closed under
complementation?

Question to ponder: are
the nonregular languages

closed under
complementation?

NFAs

Revisiting a Problem

q0 q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● A model of computation is nondeterministic if
the computing machine has a finite number of
choices available to make at each point, possibly
including zero.

● Represents a fundamental shift in how we'll think
about computation.

NFA

● State structure similar to a DFA
● Different transition function:

● DFA: δ : (S × Σ) → S
– always go to exactly one state

● NFA: δ : (S × Σ) → (℘S)
– could go to one, many, or none!

● Different accept condition:
● Accepts if there exists a series of choices

that ends in an accepting state.

A Simple NFA

q0 q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

A Simple NFA

q0 q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1
q0 has two transitions

defined on 1!

q0 has two transitions
defined on 1!

A Simple NFA

q0 q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

start 1

1

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q3

q2q2q2q2q1q1q0q0

q3

A Simple NFA

start 1

1

 0, 1
0 0, 1

 0, 1

0 1 0 1 1

q3

q2q2q2q2q1q1q0q0

q3

A Simple NFA

start 1

1

 0, 1
0

 0, 1

 0, 1

0 1 0 1 1

q3

q2q2q2q2q1q1q0q0

q3

A Simple NFA

start 1

1

 0, 1
0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

start 1

1

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

start 1

1

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

start 1

1

 0, 1

q3

0

 0, 1

 0, 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

If a NFA needs to make a transition
when no transition exists, the

automaton dies and that particular
path does not accept.

If a NFA needs to make a transition
when no transition exists, the

automaton dies and that particular
path does not accept.

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

A More Complex NFA

q2

start 1

1

q2

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

A More Complex NFA

q2

start 1

1

q2

 0, 1

0 1 0 1 1

q1q0q0 q2q2

A More Complex NFA

q2

start 1

1

q2

 0, 1

Oh no! There's no
transition defined!

0 1 0 1 1

q1q1q0q0 q2q2

A More Complex NFA

q2

start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

A More Complex NFA

q2

start 1

1

q2

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

A More Complex NFA

q2

start 1

1

q2

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

A More Complex NFA

start 1

1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

A More Complex NFA

start 1

1

 0, 1

0 1 0 1 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

A More Complex NFA

start 1

1

 0, 1

Hello, NFA!

q2q2q2q2q1q1q0q0

start h i

h i

q0 q2q2q2q2

Hello, NFA!

q1q1q0

start h i

h i

q1q0q0 q2q2q2q2

Hello, NFA!

q1

start h i

h i

q1q0q0 q2q2q2q2

Hello, NFA!

q1

start h i

h i

q2q2q1q1q0q0 q2q2

Hello, NFA!

start h i

h i

q2q2q1q1q0q0 q2q2

Hello, NFA!

start h i

h i

q2q2q2q2

Tragedy in Paradise

q1q1q0q0

start h i

h i p

q0 q2q2q2q2

Tragedy in Paradise

q1q1q0

start h i

h i p

q1q0q0 q2q2q2q2

Tragedy in Paradise

q1

start h i

h i p

q1q0q0 q2q2q2q2

Tragedy in Paradise

q1

start h i

h i p

q2q2q1q1q0q0 q2q2

Tragedy in Paradise

start h i

h i p

q2q2q1q1q0q0 q2q2

Tragedy in Paradise

start h i

h i p

q2q2q1q1q0q0 q2

Tragedy in Paradise

start h i

h i p

q2q2q1q1q0q0

Tragedy in Paradise

start h i

h i p

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0q0 q1

q4 q5

q2

q0q3

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0q3q3

q0q0 q1

q4 q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2
a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q4q0q3q3

q0q0 q1

q4 q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q5

q2
a

ε

a

b

b, ε b

a

ε

b a a b b

q4

q1

q4q0q3q3

q0q0 q1

q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

q5

q2
a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q1 q2

q4

q1

q4q0q3q3

q0q0

q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

q5

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0 q2q1 q2

q4

q1

q4q0q3q3

q0

q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

q5

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0q3

q0q0 q2q1 q2

q4

q1

q4q3 q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

q5

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q4q0q3q3

q0q0 q2q1 q2

q4

q1

q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

q5

a

ε

a

b

b, ε b

a

ε

b a a b b

q4 q5q4q0q3q3

q0q0 q2q1 q2q1

q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0q3 q5q4 q5q4q3

q0q0 q2q1 q2q1

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

b a a b b

q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

b a a b b

q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε
Not at all fun or

rewarding exercise: what
is the language of this NFA?

Not at all fun or
rewarding exercise: what
is the language of this NFA?

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

● NFAs are not required to follow ε-transitions.
It's simply another option at the machine's
disposal.

Intuiting Nondeterminism

● Nondeterministic machines are a serious
departure from physical computers. How
can we build up an intuition for them?

● There are two particularly useful
frameworks for interpreting
nondeterminism:
● Perfect positive guessing
● Massive parallelism

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start
q₀ q₁ q₂

a b

Σ

q₃
a

q₃

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₀ q₁ q₂
a b

Σ

b a b

q₃
a

a

q₃

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₁ q₂
a b

Σ

b a b

q₃
a

a

q₃

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₁ q₂
a b

Σ

b a b

q₃
a

a

q₃

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₁ q₂
a b

Σ

b a b

q₃
a

a

q₃

q₀ q₁

a b

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₂
a b

Σ

b

q₃
a

a

q₃

q₀ q₁

a b

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₂
a b

Σ

b

q₃
a

a

q₃

q₁ q₂q₀ q₁

a b

q₀ q₂ q₃

Perfect Positive Guessing

start

a

a b

Σ

b

q₃
a

a

q₃

q₁ q₂q₀ q₁

a b

q₀ q₂ q₃

Perfect Positive Guessing

start

a

a b

Σ

b

q₃
a

a

q₃

q₃q₃q₂q₁ q₂q₀ q₁

a b

q₀

Perfect Positive Guessing

start

a

a b

Σ

b

a

a

q₃

q₃q₃q₂q₁ q₂q₀ q₁

a b

q₀

Perfect Positive Guessing

start

a

a b

Σ

b

a

a

q₃

Perfect Positive Guessing

● We can view nondeterministic machines as
having Magic Superpowers that enable them
to guess choices that lead to an accepting state.
● If there is at least one choice that leads to an

accepting state, the machine will guess it.
● If there are no choices, the machine guesses any one

of the wrong guesses.
● There is no known way to physically model this

intuition of nondeterminism – this is quite a
departure from reality!

q₃q₃q₂q₁ q₂q₀ q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃q₃

We're in at least one accepting
state, so there's some path that
gets us to an accepting state.

We're in at least one accepting
state, so there's some path that
gets us to an accepting state.

q₀ q₃q₂q₁

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃q₀

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃

q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a
q₃q₃

We’re not in any accepting
state, so no possible path

accepts.

We’re not in any accepting
state, so no possible path

accepts.

Massive Parallelism

● An NFA can be thought of as a DFA that can be in many
states at once.

● At each point in time, when the NFA needs to follow a
transition, it tries all the options at the same time.

● (Here's a rigorous explanation about how this works; read
this on your own time).
● Start off in the set of all states formed by taking the start state

and including each state that can be reached by zero or more
ε-transitions.

● When you read a symbol a in a set of states S:
– Form the set S’ of states that can be reached by following a single a

transition from some state in S.
– Your new set of states is the set of states in S’, plus the states reachable

from S’ by following zero or more ε-transitions.

Designing NFAs

● Embrace the nondeterminism!
● Good model: Guess-and-check:

● Is there some information that you'd really
like to have? Have the machine
nondeterministically guess that information.

● Then, have the machine deterministically
check that the choice was correct.

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

Ask yourself these design questions:

Would it be really easy to design an
NFA to detect the substring 010 at the
end, if you knew that’s what you were
looking for, and when you’d reached

the near-end?

Would it be really easy to design an
NFA to detect the substring 101, if you
knew that’s what you were looking for,
and when you’d reached the near-end?

Would it be really convenient if you
could just magically guess that?

Ask yourself these design questions:

Would it be really easy to design an
NFA to detect the substring 010 at the
end, if you knew that’s what you were
looking for, and when you’d reached

the near-end?

Would it be really easy to design an
NFA to detect the substring 101, if you
knew that’s what you were looking for,
and when you’d reached the near-end?

Would it be really convenient if you
could just magically guess that?

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0
1 0

1
0 1

 Σ

 Σ

machine for
“substring 010 at

the end”

machine for
“substring 010 at

the end”

machine for
“substring 101 at

the end”

machine for
“substring 101 at

the end”

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0
1 0

1
0 1

start

ε

ε

 Σ

 Σ

“Magic Guessing”
nondeterminism is

pretty useful!

“Magic Guessing”
nondeterminism is

pretty useful!

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

NFA Design Hack!
If you can write the language as the union of two or more very

simple languages:
(1) make simple DFA/NFAs for those simple languages

(2) a single start state dispatches to the simple DFA/NFAs
using epsilon transitions

NFA Design Hack!
If you can write the language as the union of two or more very

simple languages:
(1) make simple DFA/NFAs for those simple languages

(2) a single start state dispatches to the simple DFA/NFAs
using epsilon transitions

L1 = { w ∈ {0, 1}* | w ends in 010 }
L2 = { w ∈ {0, 1}* | w ends in 101 }

 = L1 ∪ L2 where:

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0
1 0

1
0 1

 Σ

 Σ
L2 = { w ∈ {0, 1}* | w ends in 101}

L1 = { w ∈ {0, 1}* | w ends in 010 }

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0
1 0

1
0 1

start

ε

ε

 Σ

 Σ

L1 ∪ L2

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

0

 1

1

 1

0

0 1

0

1

 0

1

start

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

Ask yourself these design questions:

Would it be really easy to design an
NFA to detect the string...

...has no a’s in it, if you knew that’s
what you were looking for?

...has no b’s in it, if you knew that’s
what you were looking for?

..has no c’s in it, if you knew that’s
what you were looking for?

Would it be really convenient if you

could just magically guess which letter is
the missing one this time?

Ask yourself these design questions:

Would it be really easy to design an
NFA to detect the string...

...has no a’s in it, if you knew that’s
what you were looking for?

...has no b’s in it, if you knew that’s
what you were looking for?

..has no c’s in it, if you knew that’s
what you were looking for?

Would it be really convenient if you

could just magically guess which letter is
the missing one this time?

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

Ask yourself these design questions:

Would it be really easy to design an
NFA to detect the string...

...has no a’s in it, if you knew that’s
what you were looking for?

...has no b’s in it, if you knew that’s
what you were looking for?

..has no c’s in it, if you knew that’s
what you were looking for?

Would it be really convenient if you

could just magically guess which letter is
the missing one this time?

Ask yourself these design questions:

Would it be really easy to design an
NFA to detect the string...

...has no a’s in it, if you knew that’s
what you were looking for?

...has no b’s in it, if you knew that’s
what you were looking for?

..has no c’s in it, if you knew that’s
what you were looking for?

Would it be really convenient if you

could just magically guess which letter is
the missing one this time?

L1 = { w ∈ {a, b, c}* | a is not in w }

L2 = { w ∈ {a, b, c}* | b is not in w }

L3 = { w ∈ {a, b, c}* | c is not in w }

L = L1 ∪ L2 ∪ L3

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w } = L1 ∪ L2 ∪ L3a, b

a, c

b, c

start

ε

ε

ε

L1 = { w ∈ {a, b, c}* | a is not in w }

L2 = { w ∈ {a, b, c}* | b is not in w }

L3 = { w ∈ {a, b, c}* | c is not in w }

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a

b

c

a

b

a, b

c
 a

c

b

c

c

a
b

a, c

b, c

b

a

 Σstart

Just how powerful are NFAs?

Next Time

● The Powerset Construction
● So beautiful. So elegant. So cool!

● More Closure Properties
● Other set-theoretic operations.

● Language Transformations
● What’s the deal with the notation Σ*?

