Lecture 15:
Finite Automata
Part 2 of 3

Finite Automata

Part 'Two

Recap from Last Time

Formal Language Theory

 An alphabet is a set, usually denoted 2,
consisting of elements called characters.

A string over 2 is a finite sequence of zero or
more characters taken from 2.

 The empty string has no characters and is
denoted .

A language over 2 is a set of strings over 2.
 The language 2* is the set of all strings over 2.

DFAs

* ADFA is a

e Deterministic
 Finite
 Automaton

 DFAs are the simplest type of automaton
that we will see in this course.

DFAs

« A DFA consists of:

A set of states

Exactly one element of the set of states designated as a
start state

- (as a consequence, the set of states must be nonempty)
A subset of the states designated as accepting states

An alphabet X

A transition function that maps (state, character) ordered
pairs to states

- (i.e., for each state in the DFA, there must be exactly one
transition defined for each symbol in %)

The Language of an Automaton

* If D is a DFA that processes strings over
2., the language of D, denoted (D), is
the set of all strings D accepts.

 Formally:
AD) ={we2ZX| D accepts w }

New Stuff!

The Regular Languages

A language L is called a regular language
if there exists a DFA D such that (D) = L.

If L. is a language and (D) = L, we say
that D recognizes the language L.

The Complement of a Language

* Given a language L C X2*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.

 Formally:
L=3*-L

The Complement of a Language

* Given a language L C X2*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.

 Formally:
L=3*-L

>k

The Complement of a Language

* Given a language L C X2*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.

 Formally:
L=3*-L

>k

The Complement of a Language

* Given a language L C >*, the complement
of that language (denoted L) is the set of all

strings in 2* that aren't in L. (The complement of
a language is also a language.)

* Formally:

L=y *-T

Complementing Regular Languages

L ={we€{a, b}*| wcontains aa as a substring }

b
start @ a a
4% &
b

L={wEe€{a, b}* | w does not contain aa as a substring }
b

start

)2

®

2

®
©

a
b

Closure Properties

» Theorem: If L is a regular language, then L is also a regular
language.

* (We haven’t formally proved this, but you may assume it’s true in
this class.)

« As a result, we say that the regular languages are closed under
complementation.

Question to ponder: are

the nonregular languages
closed under
complementation?

All languages

Revisiting a Problem

N FASs

* An NFA is a

« Nondeterministic
 Finite
 Automaton

A model of computation is nondeterministic if
the computing machine has a finite number of

choices available to make at each point, possibly
including zero.

 Represents a fundamental shift in how we'll think
about computation.

NFA

e State structure similar to a DFA

 Different transition function:
* DFA:6: (S xX)-S

- always go to exactly one state
« NFA: 6: (S X Z) - «AS)
- could go to one, many, or none!

» Different accept condition:

 Accepts if there exists a series of choices
that ends in an accepting state.

A Simple NFA

A Simple NFA

g, has two transitions
defined on 1!

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

RSEAL

._.F___.-

OFAPPROVAL

A More Complex NFA

start 1 1
@10
0,1

A More Complex NFA

start 1 1
) * {a)
0,1 T

If a NFA needs to make a transition
when no transition exists, the

automaton dies and that particular
path does not accept.

A More Complex NFA

start 1 1
@10
0,1

A More Complex NFA

start 1 1
@0
0,1

A More Complex NFA

start 1 1
@0
0,1

A More Complex NFA

start 1 1
@0
0,1

A More Complex NFA

start 1 1
OO
0,1

A More Complex NFA

start 1 1
OO
0,1

A More Complex NFA

start 1 o © 1
() O
0,1

Oh no! There's no
transition defined!

0(1(0|1|1

A More Complex NFA

start 1 1
@10
0,1

A More Complex NFA

start 1 1
@10
0,1

A More Complex NFA

start 1 1
@0
0,1

A More Complex NFA

start 1 1
@0
0,1

A More Complex NFA

start 1 1
@0
0,1

A More Complex NFA

start 1 1
@0
0,1

A More Complex NFA

start 1 1
OO
0,1

A More Complex NFA

start 1 1
OO
0,1

A More Complex NFA

start 1 1
@10
0,1

A More Complex NFA

start 1 1
@10
0,1

A More Complex NFA

(OB O

xSEAL

.-l-'.-

OFAPPROVAL

Hello, NFA!

tart i
IO ORR O

h|1

Hello, NFA!

tart i
IORR OO

h|1

)

Hello, NFA!

tart i
IORRORR O

h|1

)

Hello, NFA!

tart i
IORRORR O

h|1

)

Hello, NFA!

tart i
OO O

h|1

)

Hello, NFA!

ROLYOR

= SSEAL N

OFAPPROVAL

Tragedy in Paradise

OO

Tragedy in Paradise

OO

Tragedy in Paradise

OO

Tragedy in Paradise

OO

Tragedy in Paradise

OO

Tragedy in Paradise

OO

Tragedy in Paradise

OO

Tragedy in Paradise

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

Not at all fun or

rewarding exercise: what
is the language of this NFA?

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

 NFAs are not required to follow e-transitions.
It's simply another option at the machine's
disposal.

Intuiting Nondeterminism

 Nondeterministic machines are a serious
departure from physical computers. How
can we build up an intuition for them?

 There are two particularly usetul
frameworks for interpreting
nondeterminism:

* Perfect positive guessing
 Massive parallelism

Perfect Positive Guessing

)3

SoFoLoRo

Perfect Positive Guessing

)3

SoFoLoRo

Perfect Positive Guessing

)3

ScRoLoRo

Perfect Positive Guessing

)3

ScRoLoRo

Perfect Positive Guessing

)3

ScRoLoRo

Perfect Positive Guessing

)3

SOoRoLoRo

Perfect Positive Guessing

)3

SOoRoLoRo

Perfect Positive Guessing

)3

SoRoloRo

Perfect Positive Guessing

)3

SoRoloRo

Perfect Positive Guessing

)3

SOoRoLoRo

Perfect Positive Guessing

)3
ROROROR©

RSEAL

s —

._.F___.-

OFAPPROVAL

Perfect Positive Guessing

 We can view nondeterministic machines as
having Magic Superpowers that enable them
to guess choices that lead to an accepting state.

 If there is at least one choice that leads to an
accepting state, the machine will guess it.

 If there are no choices, the machine guesses any one
of the wrong guesses.

* There is no known way to physically model this
intuition of nondeterminism - this is quite a
departure from reality!

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

We're in at least one accepting
state, so there's some path that
gets us to an accepting state.

a b a ;?‘SEAI

s—Y

—

OF APPROVAL

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

We're not in any accepting
state, so no possible path
accepts.

Massive Parallelism

 An NFA can be thought of as a DFA that can be in many
states at once.

« At each point in time, when the NFA needs to follow a
transition, it tries all the options at the same time.

* (Here's a rigorous explanation about how this works; read
this on your own time).

« Start off in the set of all states formed by taking the start state
and including each state that can be reached by zero or more

g-transitions.
 When you read a symbol a in a set of states S:

- Form the set S’ of states that can be reached by following a single a
transition from some state in S.

- Your new set of states is the set of states in S’, plus the states reachable
from S’ by following zero or more e-transitions.

Designing NFAS

e Embrace the nondeterminism!
e Good model: Guess-and-check:

* Is there some information that you'd really
like to have? Have the machine
nondeterministically guess that information.

 Then, have the machine deterministically
check that the choice was correct.

Guess-and-Check

L={we€e{0,1}*| wendsin 010 or 101 }

Guess-and-Check

L={we{0,1}*| wendsin 010

or 101 }

Ask yourself these design questions:

Would it be really easy to design an
NFA to detect the substring 010 at the
end, if you knew that’s what you were

looking for, and when you’d reached

the near-end?

Would it be really easy to design an
NFA to detect the substring 101, if you
knew that’s what you were looking for,
and when you’'d reached the near-end?

Would it be really convenient if you

could just magically guess that?

Guess-and-Check

L={we€e{0,1}*| wendsin 010 or 101 }

machine for
. 1 o0 “substring 010 at
¢ the end”

—~Z

machine for
© 1 “substring 101 at
the end”

Guess-and-Check

L={we€e{0,1}*| wendsin 010 or 101 }

: 1 C
Q000

“Magic Guessing”
start nondeterminism is
pretty useful!

OO0

Guess-and-Check

={we€{0,1}*| wendsin 016 or 161 }
=L, UL, where:

L ={we{o, 1}*| wendsin 010 }
L,={we{0,1}*| wendsin 101 }

NFA Design Hack!
If you can write the language as the union of two or more very
simple languages:
(1) make simple DFA/NFAs for those simple languages
(2) a single start state dispatches to the simple DFA/NFAs
using epsilon transitions

Guess-and-Check

L={we€e{0,1}*| wendsin 010 or 101 }

., ={we{0,1}*| wendsin 010 }

L, ={we{0, 1}*|wendsin 101}

(5000

Guess-and-Check

L={we€e{0,1}*| wendsin 010 or 101 }

OO OO
'z

start ‘
P >

O+ 0O"0

Guess-and-Check

L={we€e{0,1}*| wendsin 010 or 101 }

Guess-and-Check

L={we{a, b, c}*|atleastoneofa, b,orcisnotinw }

Guess-and-Check

L={we{a, b, c}*|atleastoneofa, b,orcisnotinw }

Ask yourself these design questions:

Would it be really easy to design an
NFA to detect the string...

...has no a’s in it, if you knew that’s
what you were looking for?

...has no b’s in it, if you knew that’s
what you were looking for?

..has no c’'s init, if you knew that'’s
what you were looking for?

Would it be really convenient if you
could just magically guess which letter is
the missing one this time?

Guess-and-Check

L={we{a, b, c}*|atleastoneofa, b,orcisnotinw }

~
[T

-
|

{we{a,b, c}t*
{we€{a, b, c}*
{we{a, b, c}t*

L UL UL,

ailsnotin w }
bisnotinw }

cisnotin w }

Ask yourself these design questions:

Would it be really easy to design an
NFA to detect the string...

...has no a’s in it, if you knew that’s
what you were looking for?

...has no b’s in it, if you knew that’s
what you were looking for?

..has no c’'s init, if you knew that'’s
what you were looking for?

Would it be really convenient if you
could just magically guess which letter is

the missing one this time?

Guess-and-Check

L={we{a,Hhb, c}*|at1e€stoneofa, b,orcisnotinw } =L UL UL,
a,

L,={we€{a b, c}*|cisnotinw }

L,={we€{a b, c}*|bisnotinw }

L ={we{a b, c}*|aisnotinw }

Guess-and-Check

L={we{a, b, c}*|atleastoneofa, b,orcisnotinw }

Just how powertful are NFAS?

Next Time

« The Powerset Construction
* S0 beautiful. So elegant. So cool!
« More Closure Properties
* Other set-theoretic operations.
« Language Transformations
« What’s the deal with the notation 2*?

